首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30119篇
  免费   2777篇
  国内免费   1773篇
工业技术   34669篇
  2024年   67篇
  2023年   610篇
  2022年   779篇
  2021年   991篇
  2020年   1012篇
  2019年   1007篇
  2018年   892篇
  2017年   1021篇
  2016年   1000篇
  2015年   969篇
  2014年   1487篇
  2013年   1746篇
  2012年   1888篇
  2011年   2196篇
  2010年   1576篇
  2009年   1855篇
  2008年   1640篇
  2007年   1975篇
  2006年   1768篇
  2005年   1525篇
  2004年   1307篇
  2003年   1098篇
  2002年   937篇
  2001年   862篇
  2000年   726篇
  1999年   512篇
  1998年   444篇
  1997年   358篇
  1996年   371篇
  1995年   289篇
  1994年   255篇
  1993年   248篇
  1992年   213篇
  1991年   186篇
  1990年   165篇
  1989年   94篇
  1988年   69篇
  1987年   63篇
  1986年   60篇
  1985年   59篇
  1984年   52篇
  1983年   24篇
  1982年   51篇
  1981年   41篇
  1980年   37篇
  1979年   24篇
  1978年   28篇
  1977年   24篇
  1976年   17篇
  1975年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Eliminating the gold preg-robbing effect of carbonaceous matter in carbonaceous gold ores is crucial for gold leaching. In this study, suspension oxidation roasting was proposed to accelerate the decarbonization of carbonaceous gold ore. The characteristics of oxidation reaction process and gas release were analyzed by TG-DTA-FTIR. The phase transformation and microstructure evolution of samples during roasting were analyzed by XRD, SEM and BET. The results show that the gold preg-robbing effect was eliminated after the gasification of carbonaceous matter, and the CaO generated by decomposition of carbonates can effectively capture the SO2. After roasting for 75 min at 650 °C in a 20% O2 atmosphere, the total carbon removal rate reached 99.42%, the distribution of exposed gold increased from 28.85% to 77.10% and the gold leaching efficiency increased from 4.55% to 84.83%. In addition, about 70% sulfur was mainly fixed in the roasted products in the form of sulfate. Therefore, the suspension oxidation roasting process is an efficient and clean pretreatment method for carbonaceous gold ores.  相似文献   
2.
The present work addresses the potentialities of Pt–Ru nanoparticles deposited on a graphene oxide (RGO) and TiO2 composite support towards electrochemical oxidation of ethanol in acidic media relevant for fuel cell applications. To immobilize platinum–ruthenium bimetallic nanoparticles on to an RGO-TiO2 nanohybrid support a simple solution-phase chemical reduction method is utilized. An examination using electron microscopy and energy dispersive X-ray spectroscopy (EDS) indicated that Pt–Ru particles of 4–8 nm in diameter are dispersed on RGO-TiO2 composite support. The corresponding Pt–Ru/RGO-TiO2 nanocomposite electrocatalyst was studied for the electrochemical oxidation of ethanol in acidic media. Compared to the commercial Pt–Ru/C and Pt/C catalysts, Pt–Ru/RGO-TiO2 nanocomposite yields higher mass-specific activity of about 1.4 and 3.2 times, respectively towards ethanol oxidation reaction (EOR). The synergistic boosting provided by RGO-TiO2 composite support and Pt–Ru ensemble together contributed to the observed higher EOR activity and stability to Pt–Ru/RGO-TiO2 nanocomposite compared with other in-house synthesized Pt–Ru/RGO, Pt/RGO and commercial Pt–Ru/C and Pt/C electrocatalysts. Further optimization of RGO-TiO2 composite support provides opportunity to deposit many other types of metallic nanoparticles onto it for fuel cell electrocatalysis applications.  相似文献   
3.
Electrolysis of water for producing hydrogen instead of traditional fossil fuels is one of the most promising methods to alleviate environmental pollution and energy crisis. In this work, Fe and F ion co-doped Ni3S2 nanoarrays grown on Ni foam substrate were prepared by typical hydrothermal and sulfuration processes for the first time. Density functional theory (DFT) calculation demonstrate that the adsorption energy of the material to water is greatly enhanced due to the doping of F and Fe, which is conducive to the formation of intermediate species and the improvement of electrochemical performance of the electrode. The adsorption energy of anions (F and S) and cations (Fe and Ni) to water in each material was also calculated, and the results showed that F ion showed the most optimal adsorption energy of water, which proved that the doping of F and Fe was beneficial to improve the electrochemical performance of the electrode. It is worth noting that the surface of Fe–F–Ni3S2 material will undergo reconstruction during the process of water oxidation reaction and urea oxidation reaction, and amorphous oxides or hydroxides in situ would be formed on the surface of electrode, which are the real active species.  相似文献   
4.
Effects of different drying methods and different addition levels of eggplant (EP) on product quality of low-fat patties (LFPs) were investigated during storage. EP was dried in an oven dryer at 60 °C or a freeze dryer at −50 °C. LFPs were prepared by replacing with 1.5% soy protein isolate (SPI). Six treatments were used in this study: (1) control (CTL), without addition of EP; (2) reference (REF), 0.1% ascorbic acid; (3) O1, 0.25% oven-dried (OD) EP; (4) O2, 0.5% ODEP; (5) F1, 0.25% freeze-dried (FD) EP; and (6) F2, 0.5% FDEP. Redness (a*) and lightness (L*) values in LFPs added with EP were lower than those of others (p < 0.05) and decreased with increasing storage time. Yellowness (b*) values of cooked patties were increased during storage time (p < 0.05), with control having the highest value. The addition of EP or ascorbic acid into LFPs lowered microbial counts than control (p < 0.05). Thiobarbituric acid reactive substances (TBARS) was increased during storage, with REF having the lowest value, and patties added with EP had lower TBARS values than control during storage. Volatile basic nitrogen (VBN, mg%) contents of all patties also increased during storage time with O2 and F2 having lower values than control. Therefore, EP might have potential as a natural antioxidant in meat products during storage.  相似文献   
5.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
6.
《工程爆破》2022,(6):73-79
为解决高耸钢砼桥墩上部倾斜导致的工程质量不合格问题,采用保护性控制爆破将上部倾斜部分钢砼桥墩予以拆除,同时保留下部未偏斜部分桥墩不受破坏。采用开设组合形状切口,预开定向窗、导向窗;设置组合高差卸荷槽,预伤钢筋弱化抗压抗拉能力为关键措施的控制爆破方案。方案实施取得了十分满意的效果,上部拟拆除部分桥墩顺利倾倒下坠,下部保留部分桥墩完好无损。采用保护性控制爆破技术能高效、安全地解决类似高耸钢砼桥墩(构筑物)部分拆除、部分保留利用的问题,并能取得可观的经济、社会效益。  相似文献   
7.
Carbon-based materials have been often employed as electrocatalytic substrates because of their large surface area/highly porous structure. Similar to carbon substrates, the non-carbon related materials such as transition metals also play an important role in improving catalytic performance. However, the simultaneous synthesis and metallic functionalization of carbon substrates is a highly challenging issue. Herein, a hydrothermal method has been used for the preparation of Ni-functionalized porous carbon balls. The significant role of Ni2+ ions in the synthesis of porous carbon balls has been confirmed. The results of transmission electron microscopy indicate that, the as-prepared porous carbon balls were suitable for the dispersion of Pt nanoparticles with small particle size (less than 4 nm). In addition to providing the OHads species, the Ni can also modify the surface electronic structure of Pt. Electrochemical measurements results reveal that, under the strong interactions between Ni and Pt, the as-prepared porous carbon balls supported Pt nanoparticles (Pt/Ni-CB) catalyst possesses excellent electrocatalytic activity, stability and CO anti-poisoning capability towards methanol electrooxidation reaction (MOR). This work opens a novel idea for the construction of the metal functionalization of carbon substrates and their subsequent applications in other electrocatalytic reactions.  相似文献   
8.
9.
Zinc cadmium sulfide (ZnxCd1?xS) is a good photocatalyst for hydrogen evolution reaction (HER), but an optimum x (xm) at which a maximum HER rate is reached varies from one report to another. In this work, we examine the effect of light wavelength, not only for the HER to H2 in the presence of Na2S and Na2SO3, but also for oxygen reduction reaction (ORR) without addition of any sacrifices. For the HER under a 365 and 420 nm LED lamp, the xm were 0.9 and 0.7, respectively. For the HER under a 330 and 395–515 nm cut-off xenon lamp, the xm were 0.7 and 0.5, respectively. For the ORR under a 420 nm cut-off halogen lamp, a maximum production of H2O2 was observed at x = 0.3. Furthermore, after 4% ZnCo2O4 loading, ZnxCd1?xS had an increased activity and stability, either for the HER or for the ORR. Through a (photo)electrochemical measurement, it is proposed that the photocatalytic activity of ZnxCd1?xS is determined by its light absorptivity and electron reactivity. The improved performance of n-type ZnxCd1?xS by p-type ZnCo2O4 is due to formation of a p-n junction, promoting the HER (ORR) on ZnxCd1?xS, and the sulfide (water) oxidation on ZnCo2O4. This work highlights that ZnxCd1-xS is a promising photocatalyst for H2 and H2O2 production, respectively.  相似文献   
10.
The reaction of H2 and O2 to water are studied over a Ag–Pd/TiO2 anatase catalyst, under dark and photo-irradiation conditions in the gas and liquid phases. The catalyst consisted of metal particles of mean size of ca.1 nm dispersed over 10–15 nm TiO2 particles. Kinetic parameters including order of reaction (n), rate constant (k), and activation energy (Ea), were evaluated. Ea for the thermal reaction was found to be 49-47 kJ mol?1. The oxidation reaction rate constant was found to be ca. 3 times higher in the presence of photons when compared to dark reaction at room temperature. The overall quantum yield of the reaction in the slurry phase was found to be 0.09. Considering the number of metal particles on TiO2, the photon yield per metal particle was found to be 0.16. A possible explanation of the changes in kinetics with respect to experimental conditions is given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号